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A small drop of liquid 1 falls through a less dense liquid 2 and approaches the horizontal 
interface between liquid 3 and an underlying layer of liquid 1.  After a short time the 
drop will be brought to rest (or nearly) in a hollow in the interface. Before the drop can 
coalesce with its bulk phase, the thin film of liquid 2 trapped between them must be 
squeezed out, and become sufficiently thin that rupture can occur. This is the film 
drainage problem; Early calculations, based on simple lubrication theory, fail to take 
proper account of two effects which are investigat,ed here and shown to be decisive. 
They are the circulation induced in the drop and in the lower bulk fluid, which tends to 
speed up drainage, and the constriction in the film thickness a t  its periphery, which 
tends to slow it down. This constriction has been observed and some existing theories 
have attempted to model it in an ad hoc manner. We give here a physical explanation 
and calculate the minimum thickness explicitly. The effect of circulation in the 
adjacent fluids is also calculated. 

1. Introduction 
I n  the chemical-engineering process known as liquid-liquid extraction, two im- 

miscible liquids are stirred up so that one liquid is dispersed in the other in the form of 
small droplets. The large interfacial area thus created enables (for example) a solute 
to pass efficiently from one liquid to the other. I n  the final stages of the process the 
liquids must be separated again and it is often important to  prevent contamination 
of each liquid by small droplets of the other. The two liquids soon form two bulk layers, 
with the lighter liquid uppermost, but each will contain small drops of the other 
which approach the interface under the influence of buoyancy forces. The speed and 
efficiency with which these drops can be removed is often a key factor in the overall 
efficiency of the process. 

As an idealization of this problem we consider a single drop of dense liquid (phase 
1) sinking through a less dense liquid (phase 2 )  towards the horizontal interface between 
the two bulk phases. As the drop approaches the interface a thin layer of fluid 2 is 
trapped between the drop and its bulk phase. This thin layer must be squeezed away 
until there remains a film so thin that it can rupture, allowing coalescence. It is well 
established that most of the time required for coalescence is the time needed for this 
film to drain. Once the film has ruptured coalescence is effectively instantaneous 
(except that  sometimes a secondary droplet is formed; Charles & Mason 1960). 

With this in mind we assume that the drop has already reached the interface, 
where it is resting almost stationary, in quasi-static equilibrium, as the thin fluid 
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FIGURE 1. Cross-section of a drop resting on a phase boundary. 

film drains. The drop rests in a depression in the interface with the weight of the drop 
partly supported by Archimedes' principle and partly by the surface tension of the 
interface. We take the initial film thickness as given since this is equivalent to  choice of 
the time origin. The problem is to determine the subsequent changes in the film 
thickness and in particular how long i t  will take for the film to reach such a size that 
rupture can occur. How this rupture process is initiated is not well established but 
the current belief is that it is caused by an instability due to the van der Waal's forces 
between the molecules themselves. Such effects are likely to be important once the 
film thickness reaches lo-' m or so. Certainly experiments indicate that rupture 
becomes more likely as the film gets thinner and it is natural to conjecture that 
rupture is most likely at  the spot where the film is thinnest. If this is so, and the film 
thickness varies substantially from place to  place, it will not be enough to estimate 
the average film thickness; instead the detailed dynamics of the film must be studied 
in order to find the minimum thickness. This is the principal aim of this paper. We 
also determine the overall behaviour of the film thickness as a function of time for 
large times and show that the models studied by most earlier workers give incorrect 
results. It is the models which are inadequate, not (usually) the calculations. 

The film drainage problem has of course been studied by many writers and the 
literature up to 1971 is well covered in the survey article by Jeffreys & Davies (1971). 
The overall shape of the drop and liquid interface is well established; see, for example, 
Princen (1963) and Hartland (1967). One must make the reasonable assumption that 
the contour of the bulk-phase interface closely follows that of the lower surface of 
the drop until a definite point is reached, after which the two surfaces diverge, the 
drop closing over and the bulk-phase interface levelling off to a horizontal plane 
(figure 1 ) .  Only such an extended thin gap can explain the long times often needed 
for coalescence, and such gaps are observed experimentally. 

We now present an argument to show that the problem of the flow in the film and 
the problem of the overall shapes of the interfaces can be decoupled. The shapes of 
the drop and of the bulk-fluid interface can be determined entirely by global arguments 
without any reference to the film flow at all; we show how this can be done without 
giving the detailed solution, which can be found elsewhere (see references earlier). The 
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solution of this geometrical problem then provides the geometrical data for the study 
of the film drainage problem. 

Since the lower surface of the drop and the bulk-fluid interface are so close over 
such a large region, their curvatures will be equal as a first approximation. Further, 
since the lower bulk fluid and the drop have the same density and the gap is so small, 
the pressure difference Po between the lower bulk phase and the drop is effectively 
a constant owing to the effect of surface tension y ,  so that 2yZ = Po, and we can con- 
clude that the curvature i? is a constant. Since we also assume that the configuration 
is axially symmetric the lower region of contact, ACB in figure 1,  must be a spherical 
cap. At this stage we have therefore two free parameters a t  our disposal when des- 
cribing the surface ACB: the value of Z and the value of the angle #I a t  which the 
spherical cap terminates. We now show how the solution of the interface equation 
may be continued beyond B and obtain two conditions that must be met by the 
solution. These will serve to determine the parameters i? and #I. 

Beyond the region of contact each surface is an elastica with the pressure change 
due to surface tension balancing the difference between the hydrostatic pressure fields 
on either side. Besides the obvious fact that the curves must be continuous a t  the 
horizontal circle through AB,  the gradients of the curves must also be continuous 
there for a discontinuity would produce a force which could not be balanced in a 
fluid medium. The elastica satisfies a second-order differential equation so with these 
conditions the equation for the surface of the drop can be integrated round from 
A (or B )  to D .  There are two restrictions that must be satisfied. One is that, a t  the 
point D which is vertically above C the curve must have zero gradient. This is in order 
that the drop does not have a pointed apex, gradient discontinuities being forbidden. 
The other restriction is that a given volume V is contained in the drop. These two 
restrictions determine the values of our parameters, the angle #I and the curvature i? 
of the spherical cap. Further, since #I is now known, the elastica describing the inter- 
phase boundary BEIAF is also well determined. We have one free parameter d in  this 
case, the height of the level surface EP above AB.  Only if this is chosen correctly 
will the elastica level off properly into a horizontal surface. Thus we see that the 
problems describing the large features of the interface shapes are well posed and can 
be solved independently. Below we refer to these as the exterior solution and the results 
will be presented in terms of parameters (such as #I) which can be determined by a 
separate investigation in any particular case. 

The details of the interface shapes can only be obtained numerically, but various 
integral constraints can be obtained using only the assumptions just mentioned. 
Although this is not our main purpose we give some of these here since erroneous 
versions have appeared earlier. Details are given in appendix A. 

Of general interest is that the drop displaces a volume from the lower bulk phase 
equal to its own volume. Of more practical value is the result that 

2nlysinq5 = ApgT;, 

where p is the density, h p  = p 1 - p 2  and V, is t'he volume AGHBDA in figure 1.  We 
can use this equation to find an approximate value for #I in the case where the bubble 
remains approximately spherical with radius R, (except over the lower portion ACB) 
by assuming that V, can be replaced by the full volume V of the drop. The radius 
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of curvature R of the spherical cap will be given by R = 2Rs (the two interfaces a t  the 
spherical cap double the effect of surface tension and produce the factor 2) and hence 

'".\., sin24 = +I, (1 .1)  

where h = ApgR2/y. This formula is valid when the hydrostatic pressure variations 
are small in comparison with the surface-tension forces, i.e. when h < I .  For benzene 
and water h = 0.54 if we choose R, = 3 mm, whereupon 4 = 12" in agreement with 
numerical solutions of Princen. Equation (1.1) was derived by Charles & Mason (1960) 
€or a bubble supported by a liquid interface although they seemed to believe this 
equation was exact. They found good agreement both with their own experimental 
results and with those of Derjaguin & Kussakov (1939). 

Thus the exterior problem is well understood. The same cannot be said for the finer 
details, viz. the drainage of the fluid from the narrow gap. All attempts to derive this 
which are based on a viscous fluid model have been made under the assumption that 
a t  least one (and usually both) of the interfaces is rigid. Thus Charles & Mason (1960) 
took both surfaces to  be rigid, which leads to a parabolic velocity profile €or the flow, 
and then calculated the rate a t  which the gap closed by assuming that the change in 
the potential energy of the system is equal to the amount of energy dissipated by 
viscous friction in the gap. (This second assumption is also incorrect.) Their work was 
later extended by Jeffreys & Hawksley (1965)) who attempted to calculate details 
of the gap shape. A correct approach was made by Hartland (1969) (again keeping 
one boundary rigid), who related the pressure within the gap to the pressure in the 
surrounding fluids. Unfortunately he made no approximations in his derivation, and 
this led to a partial differential equation for the gap profile which could only be solved 
numerically, We shall solve the same problem by an analytical technique and show how 
the resulting profiles have a fairly simple physical explanation. We also compare 
our theoretical results with his experimental results. The imposition of the no-slip 
condition a t  one boundary is appropriate in this case because the experiments were 
carried out with a hollow aluminium sphere (instead of a liquid drop). The no-slip 
condition may also be appropriat'e when surfactants are present in substantial amounts. 

The gap boundaries are not rigid in general, however, and the realization that 
circulation in the drop and in the lower bulk phase must be accounted for is not new 
(see, for example, Jeffreys & Davies 1971). The possibly more natural assumption 
that the boundaries should be stress free leads to a subtle complication. If the bound- 
aries are unable to  support tangential stress then however viscous the fluid may be 
there is nothing for it to grip on to, and it should therefore be rapidly squeezed out of 
the gap. The solution of this difficulty is to take proper account of the circulation in 
the drop and in the lower bulk phase, as follows. The velocity profile in the film can 
be regarded as the sum of two terms. We refer to figure 2 and let u be the s component 
of velocity in the film, whose thickness is of order H,,, say. Then the tangential stress 
in the film is of order p2u/Ho. The velocities in the drop and lower bulk phase will 
also be of order u by continuity of velocity, and so the tangential stresses there will 
be of order p1 u/R. These stresses cannot balance to leading order in the small para- 
meter H,/R = 6. We therefore solve this problem by proposing an expansion for u 
in powers of 6 in which the leading term uo satisfies au/an = 0 a t  the boundary and 
thus is roughly a plug flow. The requirement that  the tangential stress be continuous 
is met by the terms of next order. However it turns out that  this procedure is not 
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FIGURE 2. Cross-section of a rigid cylinder resting on an elastic sheet. 

necessary in the main part of the film but only in a narrow region at  its periphery, 
for a reason to be given presently, and the details are explained in $ 3 .  Note further 
that  if one interface of the film is rigid the circulation across the other interface will, 
by the above arguments, produce terms of order 6, which in that case can be ignored. 

An entirely different treatment has recently been attempted by Chesters (1975), 
who considered the gap to be filled by an inviscid fluid and so sidestepped the rigidlfree 
boundary dilemma. Such a model will be correct when the inertia forces in the gap 
are larger than the viscous forces, and clearly this happens when the Reynolds number 
based on the gap thickness and the fluid velocity in the gap is large. Clearly this can 
always be achieved if the drop impinges on the bulk-liquid interface with a sufficiently 
high initial velocity. Conversely viscosity must dominate when the gap thickness 
becomes sufficiently small. Which is the correct model in any individual case can be 
decided only by evaluating the Reynolds number. I n  this paper we shall assume 
throughout that viscous forces dominate. 

A problem of a different nature arises when one considers the pressure and pressure 
gradients along the gap. The pressure in the gap just before the gap terminates atthe 
point B (see figure 1) cannot be equal to the pressure just beyond that point, still in 
phase 2. This is easily seen by comparing these pressures with the pressure just on the 
other side of the adjacent lower boundary. Assuming equilibrium, the pressure in 
phase 1 just below the boundary will be continuous. However the curvature of the 
surface changes suddenly a t  B, so surface tension will ensure a finite pressure drop 
on the other side in phase 2. I ts  effect will be to increase the fluid velocity in the film 
until the increased viscous stresses that are produced balance the large pressure 
gradient. By continuity, it follows that the gap must contract a t  this point, becoming 
even smaller than before. These contractions have been observed, but the explanation 
in terms of the pressure gradient does not appear to have been given. As noted above, 
it is important to understand and predict this narrowing of the gap because it is here 
(when it exists) that rupture of the film is most likely. Furthermore i t  is plain that the 
constriction will have a major effect on the overall rate of drainage of the film. 

I n  $ 2 we re-examine the problem of Hartland (1969), in which the ‘drop’ is a rigid 
sphere. This is a much simplified problem because of the presence of a rigid boundary. 
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The constriction at the edge of the film is examined in detail. There are two distinct 
cases depending on whether or not the hydrostatic pressure gradient due to gravity 
can be neglected. Solutions are found in each case. 

In  $ 3  we examine a liquid drop, and so have low-stress boundary conditions. 
However, we consider only the case when hydrostatic pressure variations along the 
gap can be neglected. Again a contraction exists at the edge. We find that the fluid 
in the main gap is essentially motionless with the pressure there constant. It needs 
only a very slight approach of the boundary surfaces over the area of contact to cause 
a flux which, when magnified by the contraction at the boundary edge, leads to  
appreciable velocities through the contraction. These velocities are driven by the high 
local pressure gradient at that point. Otherwise the solution is as outlined earlier, 
local circulation being set up in the phase 1 fluid on either side of the contraction 
and the resulting stresses balancing those in the gap. The circulation is driven by the 
high velocities in the contraction, and is therefore on the scale of the contracted 
region, the main gap length playing a passive role. 

I n  $ 2  the analysis leads to the study of single nonlinear ordinary differential 
equations whose solutions can be, and are, found once and for all. The relevant piece 
of information in the solution is, in each case, in fact a pair of numbers. For the com- 
plicated situation of $ 3 we arrive instead at a nonlinear integro-differential equation, 
which, if i t  could be solved, would presumably yield similar information. The solution 
has not been attempted for reasons given in 5 3 and the results therefore contain two 
unknown numerical constants. 

2. The settling of a rigid sphere 
We consider here a rigid sphere of radius R and weight W which is sinking through 

a liquid of density p2 towards the interface between that liquid and a liquid of density 
p1 ( >p2) .  The interface will be horizontal a t  large distances from the sphere (see figure 
2) .  We assume that the sphere has sunk sufficiently far that  it is almost touching the 
interface and is separated from it by only a thin layer of fluid 2 of thickness H ( 8 , t )  
which extends symmetrically around the sphere as far as 8 = 4. 

This is the configuration studied experimentally by Hartland so the results obtained 
here can be compared directly with his. The model also has the simplifying feature that 
the film flow must satisfy the no-slip condition at the upper boundary and will there- 
fore have a Poiseuille velocity distribution, rather than a plug-flow distribution, 
which means that me can ignore temporarily the problems of fluid circulation in the 
drop and lower bulk phase. The important feature of the draining film, the contraction 
a t  its periphery caused by the large pressure gradient, can be studied without com- 
plicat ions. 

We consider the system to be in quasi-static equilibrium, i.e. to first order all the 
forces in the system are balanced and changes relative to this equilibrium take place 
only slowly. The viscosity of the liquid in the film prevents it from draining away 
too quickly. Since the film thickness is slowly varying we must assume that we are 
given a quantity defining its initial size. (It is not obvious that this is sufficient. 
Conceivably one might have to  specify the entire initial distribution H,(B) of the gap 
thickness and consider the motion as an initial-value problem. However, under the 
quasi-static assumption the functional dependence of the gap size on 0 is determinate, 
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as will be shown, and only a constant representing its order of magnitude need be 
specified. This is equivalent to specifying the amount of fluid remaining in the gap.) 
Thus we take H ( 0 , O )  = H, as given. Then the statement that the gap is small means 
that S = H,/R < 1 .  

A further consequence of the quasi-static assumption is that the angle 4, which is 
the slope of the interface as i t  leaves the sphere, is determined from the exterior 
problem, as explained in $1, and can be regarded as known. 

We now analyse the motion in the thin film. Again using the quasi-static approxi- 
mation, we neglect the acceleration terms in the equations of motion. The balance 
of forces will be between the pressure gradient and the viscous drag. Further, if 
a boundary-layer approximation (based on the assumption 6 < 1) is made the 
momentum equations are 

ap/an = p2 9 cos 8, 

Here u is the s component of velocity, p is the pressure and pn the viscosity. 
The solution of (2.1) is p = P(s,t)+p,gncos@ 

and we shall henceforth omit the second term on the right-hand side because it leads 
to terms of order S relative to those retained. 

Then the solution of (2.2)) with the condition of zero tangential stress a t  the lower 
boundary, is 

(2.3) 

(As explained in $1, a more accurate boundary condition, allowing for the drag 
produced by the motion of the lower bulk fluid, yields a correction term of order 6.) 

The continuity equation may be written in the form 

as 

where (2.3) has been used to eliminate u from the right-hand side. The length r is 
indicated in figure 2. 

Continuity of normal stress a t  the lower boundary of the film yields the equation 

P = yi? +pI gR cos 8 + constant, (2.5) 

where i? is the curvature. The hydrostatic term in this equation is correct to leading 
order in 6;  the surface-tension term yi? will be approximated presently. 

We now use (2.5) to eliminate the pressure from (2.4).  At the same time we introduce 
the dimensionless quantities h = H/H,, K = Ri? and t = Tt', although the time scale 
T is as yet unknown and will have to be determined subsequently. We also 
set r = R sin 8, which gives 

AsinO-SE)) = -yT62sin8-f, 3P2R ah 
as a8 at 

where h = ApgR2/y as defined earlier. 
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Next we introduce into this equation the approximation 

K N Z - 8  (2 .7)  

(Hartland’s formula equivalent to (2.7) appears to be in error.) To obtain the equation 
in a convenient form for what follows we integrate with respect to 8:  

ah where P(B, t‘) = - jo atr sin 8 do. 

The solution must satisfy the boundary condition 

ahla6 = 0 where 8 = 0 
and the initial condition 

h = 1 when t ’= 0, 8 =  0. 

These conditions are not sufficient to determine the solution, of course. Further 
conditions will be obtained by studying in more detail the structure of the solution 
near 8 = #. Equation (2.8) holds in the film as far as 8 = q5, and also just beyond as 
the gap begins to widen. It will fail when the gap width is comparable to R (i.e. h 
is of order 8-1) since then the boundary-layer approximations and the curvature 
approximations fail simultaneously. 

To obtain solutions of (2.8) it is necessary to understand the physical structure of 
the equation. The function F(8,t’) is the dimensionless flux of liquid in the gap a t  
any position and time, and the term on the right-hand side of (2.8) represents the 
viscous drag due t o  this flow. On the left-hand side the first term is the pressure 
gradient due to the surface tension and the change in curvature of the lower surface, 
while the second term is the pressure gradient due to the action of gravity. We now 
outline how these terms balance and describe the structure of h as a function of 8. 

Over the main area of the film the interface remains close to the sphere and since 
h = 1 a t  0 = 0, t’ = 0 we expect h to be O(1). The pressure inside the gap is thus ap- 
proximately hydrostatic but exceeds the ambient pressure by an amount yK. It is 
this excess pressure which supports the weight of the sphere. Near the edge of the gap 
(8 = $), h will have to decrease in order to equalize the pressures of the film and the 
bulk phase. The mechanism for this has been given in 1 but bears repeating. The 
large pressure jump a t  the film periphery accelerates the fluid leaving the gap until 
the increased viscous drag of the faster moving fluid is sufficient to prevent any further 
acceleration. Since the fluid flux must remain approximstely constant, the gap must 
then contract, by continuity. Within the contraction it is thus necessary that a t  least 
the surface-tension and viscous terms of (2.8) balance, although we shall see that it is 
possible for the gravity term to be important also. (There is an implicit assumption 
here that the pressure variations in the exterior region remain small. While this will 
be true once a quasi-static equilibrium has been attained, it will not invariclbly be the 
case. For instance, a gas bubble rising towards an interface through a fluid with 
relatively low viscosity will initially cause large exterior pressure changes, and a 
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contraction need not form in that case. This feature of the exterior pressure field was 
overlooked by Chesters 1975.) Finally, h will have to increase by a net factor of S-' 
just beyond 8 = q5 so that it matches into the exterior solution. 

We have argued that the pressure in the main portion of the film is approximately 
hydrostatic with an excess pressure of order yK to support the weight of the sphere. 
However the pressure gradients which produce the fluid motion are small and might 
be dominated either by gravity or by surface tension via small variations in the 
boundary curvature, according as the ratio h/6 is large or small. Thus the detailed 
structure of the flow depends on t'his ratio. 

We begin by considering the case h < 6. The solution so obtained cannot be valid 
for all times, of course, since H must decrease with time and this must be equivalent 
to  having chosen a smaller initial value for H,, i.e. to  a reduced value for S. Thus 
eventually gravity must dominate, and the solution we are about to find will apply 
only to  the early stages of the settling of the drop. We consider the case h 6 sub- 
sequently. 

Neglecting gravity, then, (2.8) becomes 

(2.9) 

where E = 3p2R/yTS3 is effectively an arbitrary parameter since at present the time 
scale T has not been determined. 

We now argue that E --f 0 as 6-t 0 in order to  obtain a solution with the required 
structure. This can be verified a posteriori from the solution we obtain and essentially 
follows from the requirement that the solution for h must change by an order of 
magnitude 6-1 just beyond 6 = 9. Since E is our only disposable parameter it must be 
functionally related to S. It is not possible for E to be O(1) for then, while h might 
increase numerically beyond the contraction, it would still have to remain formally 
O(1). Since supposing that E is large leads immediately to a contradiction a solution 
of the required form can be possible only if E is formally small. We now obtain a 
solution based on this using matched asymptotic expansions. 

I n  accordance with the usual terminology of matched asymptotic expansions, we 
call the solution that is valid over the main portion of the film the outer solution and 
the solution that is valid over the contraction the inner solution. The reader is 
reminded that the term 'exterior solution' is being used to denote the solution outside 
the film entirely. 

Taking E to be small, we can neglect the right-hand side of (2.9) to obtain the 
equation &/a8 = 0,  so that  the lower interface has the form of the cap of a sphere. 
This result cannot be uniformly valid over the entire gap, however, for if so the lower 
surface would have completely to envelop the solid sphere. The spherical cap is 
therefore an outer solution and must intersect the solid sphere in a horizontal circle. 
(Note that it is impossible for two spheres to touch tangentially and also symmetric- 
ally, so the intersection must be at a finite angle with h decreasing linearly.) Near this 
intersection h becomes small so the right-hand side of (2.9) is no longer negligible. 
This region of non-uniformity corresponds to the reduction in film thickness mentioned 
earlier and so must be locatedat 6' = #. We term the solution in this contraction region 
the inner solution. Moreover, as mentioned previously, it is necessary that just beyond 
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the contraction h increases to O(S-1) and we shall see that the equation for the con- 
traction region has the appropriate behaviour to achieve this. 

We now obtain the solution in detail. For the outer solution we set the right-hand 
side of (2.9) to zero to obtain 

with boundary conditions a t  0 = 0 as above and with the further condition 

h = O  a t  0 = $ ,  

which is the condition for first-order matching to the inner solution a t  the contraction. 
The solution is 

where 

(2.10) 

(2.11) 

and j ( t ’ )  contains the time dependence of the outer solution. It must satisfy the 
initial condition j ( 0 )  = 1 but is otherwise determined by matching to the inner 
solution. In  fact we shall show that j ( t ’ )  = (4t’ + 1)-f. The spatial dependence of h is 
contained in fl and we have given an approximate form valid for small q5 (0 < 0 < $) 
since this makes its shape easily appreciated. 

We continue by finding the inner solution valid near 0 = $. The scaled variables 
appropriate to this region can be found in the usual manner but are somewhat 
complicated : 

E E 
h = - j ( )  t’ J(8,  0 - d = %At’) 6, 2m 

(2.12) 

where m = sin$/(l-cos$). 

The factors of m are introduced for convenience to cancel a similar factor that occurs 
in the equation. The factors of E are necessary to bring the viscous drag on the right- 
hand side of (2.9) into balance with the left-hand side while also allowing matching 
to the outer solution. The time dependence of the scalings is necessary to achieve 
matching with the outer solution on the one hand and with the exterior solution, 
which is time independent, on the other. It is interesting to note that, unlike the outer 
solution, which is of separable type, the inner solution is of similarity form, so a 
simple composite solution for both regions would not be easily attainable from the 
original equation. 

We now substitute (2.12) into (2.9) and retain only the terms of largest order. We 
see that only the value of the fluid flux a t  0 = q5 is important. This is to be expected 
since on the stretched 6 scale the flux is constant to O(e), and depends only on the 
time. The variation in the viscous drag is accounted for by the h-3 factor and not the 
flux variation. Thus 

where we have used (2.10) to evaluate the integral. On substituting we find that the 

d3J 1 d j  1 
equation to first order is 

_ - _ -  - 
- j 5  dt‘ J 3 ‘  
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For a solution to  exist we must have 

dj ld t ’  = constant xj5 

and the constant can be arbitrarily selected as unity since other choices are equivalent 
to altering the time scale T. Thus 

j ( t ’ )  = (4 t ’+  1 ) - )  ( 2 . 1 3 )  

and the spatial dependence J satisfies 

d3J/dc3 = 1 / J 3  ( 2 . 1 4 )  

with the condition that J matches into the outer solution ( 2 . 1 0 )  as [+-a: 

dJ/df;+-m, d2J/dc2-+0 as c+-oo. 

Since ( 2 . 1 4 )  does not contain [ explicitly this amounts to a complete specification 
of the boundary conditions: the solution will be determinate to within an arbitrary 
displacement of the origin. Such a displacement is equivalent to changing q5 by an 
amount O ( E )  and this is negligible to first order. To determine this displacement one 
would need to  examine higher-order terms. Thus one has no control over the asymp- 
totic behaviour of J for large positive values of 6,  so one must expect that as J becomes 
large and the term on the right-hand side of ( 2 . 1 4 )  becomes negligible, the solution 
becomes J - a t 2  as c+co, ( 2 . 1 5 )  

where a is a constant which must be determined by solving the equation. I n  fact a 
numerical computation gives 

a = am5,  where a 2: 0.61 
(see appendix B) . 

It is necessary that (2 .1  5) matches the exterior solution. The quadratic dependence 
of J on [ shows that the interface between the upper and lower bulk fluids must 
approach the sphere tangentially, as was assumed when solving the exterior problem. 
The form of H from the exterior solution can then be shown to be 

( 2 . 1 6 )  

where E is the radius of curvature of the curve formed by the intersection of the 
bulk-fluid interface and a vertical plane through the axis of symmetry, evaluated 
a t  8 = q5. (Referring to  figure 1 ,  i t  is the radius of curvature of EB a t  B.)  Thus E is 
determined by the exterior solution and will be regarded as known. The derivation 
of ( 2 . 1 6 )  is given in appendix C. 

Matching ( 2 . 1 5 )  and ( 2 . 1 6 )  finally enables us to  determine 6 :  

Thus we see that e is 0(6),  i.e. formally small as predicted. This enables us to find the 
only remaining unknown, the time scale T :  

I 0  

( 2 . 1 7 )  

F L M  87 
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I n  the above analysis we have used the initial value H,, to form the small parameter 
6 which was used as the basis for an asymptotic expansion of the solution. The time 
dependence of the solution was kept clearly separate. However, the distinction must 
be an artificial one since by altering our choice of the time origin t‘ = 0 we could 
obtain the same problem but with a different initial condition. The solutions must all 
have the same form under this transformation, which is possible only if 6 and j ( t ‘ )  do 
not occur independently but only as A(t’) ,  where 

A(t’)  = H ( O , t ’ ) / R  = 6j( t ‘ ) ,  (2.18) 

whenever any real, i.e. dimensional, quantity is considered. It can be verified that 
this is the case with the main film thickness O(AR) ,  the contraction thickness 0 ( A 2 R )  
and the contraction length O ( A R ) .  The scalings are thus quasi-static scalings, de- 
pending on the current gap thickness. 

The solution obtained so far is a rather specialized one in that it does not satisfy 
arbitrary initial conditions. If, at t’ = 0, the surface did not have the shape prescribed 
by (2.11), but the other assumptions were valid, (2.9) would have to be solved as a 
proper initial-value problem. The right-hand side of (2.9) could then no longer be 
small and would presumably be brought into balance by ahlat’ being large. Thus the 
initial changes would occur on a short time scale and one would expect the solution 
to decay into the one we have found above, although we have no proof that this 
happens. 

We continue by finding the correction to the above solution due to gravity. In  the 
main gap length the correct equation is 

with the boundary conditions as before. The solution is 

h = j ( t ’ ) f l ( e ,  $4) + (u&f2(e,  $4), 

where f l  has already been defined by (2.1 1 ) and 

(2.19) 

Aeyp - 8 2 ) .  

The nature of these solutions is most easily seen by the approximate forms which 
are valid for small q5 (0 < 0 < 4). Thus fi, which represents the cap of a sphere, has a 
parabolic shape decreasing monotonically from unity a t  0 = 0 to zero a t  19 = $. The 
function f2, which represents the distortion of the spherical cap due to hydrostatic 
forces, has a double zero a t  0 = 0, increases slowly to its maximum value a t  8 = 4/24, 
then decreases fairly sharply to zero. The behaviour is much the same when q5 is of 
order unity. 

It is interesting now to consider the solution a.s j ( t ‘ )  changes with time. The balance 
between the two terms is decided by the ratio h/6 j ( t ’ )  = AIA. Initially this is small 
since we are taking h/6 Q 1 and so the gap thickness is largest a t  8 = 0 and decreases 
monotonically to 8 = $4. As j ( t ’ )  decreases and A/A increases, the gravitational term 
eventually becomes of comparable importance. The effect is to level off the gap 
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thickness over the centre region with a much sharper decrease near 8 = 4. Letting 
j ( t ' )  be even smaller, one can even obtain a mild increase in the gap thickness before 
it finally decreases. 

The behaviour just described is evident in the experimental results of Hartland 
(1969). He photographed a hollow aluminium sphere rising through golden syrup into 
liquid paraffin and took measurements from enlargements of these photographs. His 
paper shows tracings of the gap thickness a t  five different times, and a transition of 
the form just described is clearly noticeable. The transition curve that he sketched 
has H, = 5-2  x lO-4m, the nearest curve above it having H, = 9.5 x lW4m and the 
nearest curve below it having H, = 2.3 x 

R = 6.325 x 10-3111, 

m. His physical parameters are 

y = 4-01 x 10-2kg/s2, A p  = 530kg/m3, 

from which one can calculate h = 5.2. It is still possible to use the solution (2.18) 
even with the large values of h / A  that this produces because the numerical values 
taken by the function fi(S,$) are so small. Transition to gravity-dominated flow 
should occur when Rhf2(max) is comparable to H,. Taking q5 = 65" (from Hartland's 
sketches), these two quantities are equal when H, = 4.3 x 10-4m, which, of course, is 
an underestimate of the transition thickness since the non-uniformity of the solution 
will already be rendering (2.19) invalid. 

A more detailed comparison with the experiments shows that the theory seriously 
underestimates the rate of thinning of the film in the early stages. This may be ascribed 
to  the failure of the quasi-static approximation, which seems in Hartland's experi- 
ments to hold only in the final stages of the motion when 6 << A. However the regime 
h < 6 might well occur in other cases, for example where Ap or R is small. 

We turn now to the consideration of (2.8) in the case S << A. On the left the curvature 
terms in h will be negligible compared with the hydrostatic terms, and a balance can 
be achieved only by retaining the term on the right due to  viscous drag, giving the 
equation 

This is properly treated as an initial-value problem, but here we simply assume 
that the solution develops into a separable form and see what features can be deduced 
from that. Only one form of separable solution is possible, namely 

where C is a constant and 

(2.20) 

(2.21) 

This solution will either be valid for all times (if 6 < A ) ,  in which case C may be deter- 
mined from the initial conditions, or else will be valid only for large times (if S $ A ) ,  
in which case C is not immediately determinate but would anyway become negligible 
as yAt increases. I n  principle C could be found in the latter case by considering the  
full initial-value problem. 

We see that h decreases as t-3 for large t .  Note that (2.13) has the consequence 
haz t - f ;  this does not mean that the rate of thinning actually increases since (2.13) 

10-2 
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FIGURE 3. Graph of the function i(0) [equation (2.21)]. 

holds for smaller values of t .  (The two expressions represent different approximations 
of the same function, valid in different ranges of t . )  The form of i ( 8 )  is sketched in 
figure 3. It is almost constant with a very gradual rise from its minimum a t  8 = 0. 
This is also a noticeable feature of the experimental curves sketched by Hartland. 
(The singularity a t  8 = 7~ is outside the range of interest.) 

To show that (2 .20 )  is a possible solution of the problem it is necessary to consider 
the region at  the edge of the film and to show how the solution (2 .20)  merges with the 
exterior solution. To do this we int,roduce appropriate variables which bring the order 
of magnitude of the surface-tension terms in (2.8) to that of the others. These are 

(2 .22a)  

(2 .223)  

(2.22 G )  

Since A is small the flux term P(8, t )  is approximately independent of position in the 
neighbourhood of 0 = 9, just as in the previous case. Neglecting small terms, the 
equation thus reduces to 

a3G/ac3 = G-3- 1 (2 .23)  

and this must be solved subject to the boundary conditions that G - t l  as {+-m 
and G matches the exterior solution. It should be noted, however, that the solution 
does not match in the usual sense of asymptotic overlap. The solution is given in 
appendix D and a typical sketch of a solution curve is given in figure 4. 

3. The settling of a drop 
In  this section we consider a genuine fluid drop settling into a bulk phase, but we 

make the assumpt’ion that the hydrostatic pressure variations in both phases can be 
neglected. The gross features of the solution have already been established in $ 1 .  
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FI~URE 4. A typical curve G(5) [appendix D). The 5 origin has 
been shifted t o  coincide with the minimum of G. 

The touching faces of the drop surface and the bulk interface will form a spherical cap 
whose radius R can be determined without reference to the details of the flow in the 
narrow gap which separates them. We use this to define our co-ordinate system for 
the gap. We let the co-ordinate S be the length of an arc measured along the sphere 
surface from the centre of the cap and let 0 = SIR. As usual, Ti is the co-ordinate 
normal to S .  The exact interfaces will then have the equations 

R, = R + 4 ( S ) ,  R, = R+F,(S), 

where Rl,u is the distance from the centre of curvature of the spherical cap to the 
surface. The subscript 1 refers to the (lower) bulk interface and the subscript u to the 
(upper) drop interface. The functions F are unknown. We are, of course, assuming 
axial symmetry. The gap thickness at any point is thus 

H(S) = F , ( S )  -Fu(S). (3.1) 

The equation of normal momentum yields H = P(S) as usual. The solution of the 
equation of tangential momentum 

a p p s  = pz azulanz 
must satisfy the condition that the tangential stress is continuous a t  the boundary. 
As explained in § 1,  this means that the stress must be of a smaller order of magnitude 
than the terms we are examining because of the difference in order of magnitude of 
t,he spatial derivatives. The drop motion would be on the scale R while the gap motion 
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would have as its scale H ( 0 )  = H,. So we must take aG/a% = 0 at the interface, in 
which case the only possible solution is 

from which it follows that 
u = up), 

F = constant = Po. 

The condition that the normal stress is continuous a t  both interfaces gives the tWQ 

equations 
y q  = P ,  (3.2) 

(3.3) y(Zt + ZU) = constant, 

from which it is easy to deduce that both curvatures are constant over the main region 
of the gap. 

Just as in the previous section, this solution cannot be applied uniformly. There 
must be a contraction of the gap thickness a t  the edge of the spherical cap, which 
alters the orders of magnitude of the variables. Thus the gap thickness over the main 
gap length must satisfy 

Ho when B = 0, 

0 when 6 =  4 
H = {  

and is therefore 

Although the contraction changes the orders of magnitude of the variables, the 
solution scheme that we have just outlined still applies in the contraction. But we 
must now pursue the solution in more detail since the dynamics of this region determine 
the rate a t  which the fluid drains from the gap. The velocity increases by O(8-l) but 
in spite of this we can still conclude that U = U ( S )  only, and that the pressure gradient 
can be neglected to first order. Since the velocity a t  the interface is continuous, fluid 
on the other side of the interface will be set in motion, forming localized flows on both 
sides of the gap. These drag flows will be on the scale of the gap length 6R and will 
lead to small but non-vanishing stresses at  the interface. These stresses are balanced 
by a second-order flow in the gap driven by the pressure gradient, which can now 
no longer be neglected. 

We introduce scaled dimensionless variables as follows : 

S -3+ = ~ R s ,  Fi = 6Hon, P = ( y / R ) P ,  

= (YSZ/P,) b o b )  + %(s). . . ) I  

i? = R - l ~ ( s ) ,  P =  S2RP(s), H = 6 H 0 Z ( s ) ,  

where 3$ is the value of s a t  8 = 4. 

by means of the continuity equat,ion 
The first-order flow uo(s) is as yet unknown. It can be related to the gap thickness 

uo(s)*(s) = Q 

where R is the dimensionless flux per unit perimeter, which, as previously, we take 
to be an unknown constant. This first-order velocity in the narrow gap will drive flows 
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in the adjacent phase 1 regions across the interfaces whose length scale will be that of 
the narrowed region, i.e. SR. Since the shape of each interface changes only on the 
scale R, the smaller length scale of these drag flows means that the interface will 
appear locally plane as far as they are concerned. (The reader is reminded that at the 
narrow gap the interfaces undergo a change in curvature but not in slope.) Further- 
more, since the radii of curvature of the interfaces are also of order R, the flows can 
be considered two-dimensional. From these considerations the following canonical 
boundary-value problem emerges. We have a two-dimensional slow viscous flow in a 
semi-infinite region with the velocities u = uo(s) and v = 0 specified along its plane 
boundary y = 0, where y and v are the normal co-ordinate and velocity component 
respectively. This problem is solved in appendix E, where we show that the stream 
function $ is given by 

u,,(z)dz 
$ = R e ? /  77% -mz-(s+iy)’ y > 0. (3.5) 

Thus we can find the stress a t  the boundary y = 0: 

where the integral is a Cauchy principal value and the subscript on p refers to the 
phase. This stress must be balanced by the stress of the second-order gap flow, whose 
equation is 

d P / d s  = a2u,/8n2. 

Integrating this equation across the gap gives 

Finally we can relate the pressure to  the curvatures and hence to the gap thickness. 
The usual approximation K = 1 +F”(s) is employed for the curvature. Hence we may 
combine (3.1) and (3.3) to obtain (in dimensionless form) 

and so from (3.2) 

Substituting this into (3.6) and also using (3.5) to eliminate uo from the integrand 
produces our final equation: 

The flux Q is determined by the requirement that this equation has a solution 
which satisfies the boundary conditions 

d&/ds = -sin+/(l-cos$) = -m as s4--03 

in order to match the gap solution (3.4). Also, in order that the solution matches 
the exterior solution we require that 

d 2 X / d s 2  3 2( 1 + R/E,)  as s -+ 00, 
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where E, is the same as the quantity E of the previous section. Equation (3.7) and its 
boundary conditions can be reduced to a canonical dimensionless form by introducing 
the scaled variables 

Then we have 

8p, Rm2 t m3p2n 4 
% = (  ~ 2 n  ) G, s =  (w) x = p x ,  t = p T .  

ax3 -w G2(z)  ( z -x ) ’  

dG/dx+-1 as x+-m.] 

There seems to be no theory for equations of this type, and the best advice available 
to the authors is that a t  present there is no real prospect of finding the solution 
numerically. One can only conjecture that, if the equation represents a sensible 
approach to the physics, the solution will exist and be unique. We therefore complete 
the solution in terms of the two unknown constants 

Gmin = a, G(co)  = /3. 

We deduce that 

and the actual dimensional flux per unit span fi = EH is related to 

From (3.4) we have 

by 

fi = (yH$/p2  R3) S?,. 

and hence 

sin 0 de 6 cos 0-  cos q5 - 
R2nR sin q5 = - 3 2nR2 I0 at 1-cosq5 

= - 2nR2 sin2 *q5 dH,/dt 

(3.9) 

(3.10) 

with the consequence that JK t-t as t + 00. The ratio of the minimum film thickness 
to that a t  0 = 0 is 

and Q is given by (3.9). 
Finally in this section we justify the assumption that the circulating motion in the 

drop and lower bulk phase is steady. The time scale on which these motions are 
established is @ / u ,  since their length scale is H,. The time scale of the film drainage 
may be found from the form of fi, the flux per unit perimeter out of the film, which is 
given by (3.10). The value of !2 is unknown since p is unknown, but assuming that it 
is an order-one number, the time scale of the film drainage is p2 R4/yH,3. Thus the 
assumption that the circulating motionis steady is valid provided that yH,5/u,p2 R4 Q 1,  
which is generally satisfied. 

4. Concluding remarks 
Simple theories of film drainage based on lubrication theory neglect two effects, 

which have been evaluated and shown to be decisive. The first is the effect of circulation 
in the drop and the lower bulk phase, which tends to speed up the rate of drainage. 
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The second is the narrowing of the film a t  its periphery in order to smooth out the 
sharp pressure drop. This tends to slow down the rate of drainage. 

If either or both of the surfaces bounding the film is immobile in the tangential 
direction, so that it can support tangential stress in the same fashion as a solid surface, 
the effect of circulation is irrelevant and the rate of drainage is substantially reduced 
(by comparison with existing models) by the constriction a t  the periphery. This 
theory will also apply when the ‘drop’ is actually a solid body, and may be appropriate 
as an approximation when significant quantities of surfactants are present. 

For the case when both surfaces are mobile the problem has been analysed only for 
the case in which hydrostatic forces in the film are negligible. There results an integro- 
differential equation whose solution has not been found, but the analysis is complete 
except for a numerical constant which is the solution of that equation. There seems 
little point in extending the theory to include hydrostatic effects until these computa- 
tional difficulties can be overcome. On the other hand, a solution which is complete 
up to a constant will still be useful for comparison with experiment. 

Two features of the solutions are of particular interest. The rate a t  which the film 
thins out as a function of time has been determined and it turns out that for large 
times we have Hcc f a ,  where a depends on the model. Standard lubrication theory 
gives the value a = Q. From the present theory we have, for one rigid boundary, the 
value a = ;I when gravity is negligible and a = Q when gravity is dominant. These 
results are derived in tj 2. For the case of two free boundaries and gravity negligible 
we have a = 9. 

The minimum value of the film thickness, when it occurs a t  the periphery, has been 
found. This is important because it is likely that it is this minimum thickness, not the 
average thickness, which determines the probability that the film will rupture. The 
results are given a t  the ends of $0 2 and 3. 

Finally, it should be pointed out again that the theory is based on the quasi-static 
approximation and the thin-film approximation. The former approximation may well 
be inappropriate if the drop approaches the interface a t  high speed in the initial 
stages; this would occur with gas bubbles or large liquid drops where the density 
difference is large. As regards the thin-film approximation, the results are asymptotic 
and thus are formally valid in the limit as the thickness tends to zero if other quantities 
are held fixed; but they may be useless in practice if another quantity turns out to 
be very large. For example, it has been assumed that the viscosity ratio of the fluids 
is not large and for this reason also the results will not hold for air bubbles. 

We wish to extend our thanks to Mr G .  Siemieniuch, who performed the numerical 
computations, and to Dr G .  R. Wickham for assistance with the boundary-value 
problem in appendix E. We are also indebted to the referees for pointing out an error 
in formula (2.7) and for other suggestions which improved the paper. 

Appendix A 
I n  this appendix we obtain various integral constraints on the basic drop profile 

(the exterior solution). The notation is the same as that in figure 1, which also displays 
the expressions for the pressures in the different regions. For simplicity we shall 
derive the results for two-dimensional drops only, then quote the corresponding 
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result for axially symmetric three-dimensional drops. The volumes referred to in 
the two-dimensional case are thus really cross-sectional areas (volume per unit length). 
We denote the total volume of the drop by V, the volume AGHBDA by V,, the volume 
ABHGA by V,, the volume ACBJA by V, and the volume 2(BEHB) by V,. 

We begin by resolving the vertical forces on the volume V,: 

2ysin4+! ACB P4dx+jBJAP3dx = p,gV,, 

where Pa is the pressure in the gap, Pa = Pl + YK. The integrals are easy to evaluate, and 

2ysin$+ [2ysin$-2ZPo+p1gV3] = plgV, 

so 21P, = 4y sin $. (A 1)  

The corresponding expression for axial symmetry is 

d2P, = 4nlysin4. 

Next we resolve the vertical forces on the combined volume V, + V,: 
n 

J P2dx+J P3dx-2ysin$ = plg(V,+K),  
BDA A J B  

which can be evaluated to give 

P29K + 2P,l +P1 sv, - 2Y sin 4 = PldV, +GI* 

2y sin 4 = ApgV,. 

Combining this with (A 1 )  gives 

(A 2) 

The corresponding expression for axial symmetry is 

2nlysin4 = ApgV,. 

This equation can be used to find an approximate value for $ when V, N I? If now 
we consider the equation of the elastica BEIAF and integrate with respect to x across 
its entire length 

- y Kdx = JB,  Apgx dx, S,, 
then the result is 

2y sin $ = ApgV, (A 3) 

since 6 is defined to be twice the volume BEHB. Thus, with (A 2), this shows that the 
drop displaces an amount of fluid equal to its own volume. The same conclusion also 
holds in the case of axial symmetry. The equation corresponding to (A 3) is 

2nyZ sin q5 = Apg& 

where V, denotes the total volume generated when the area BEHB is rotated about 
the axis of symmetry. 

Finally we resolve the horizontal forces on the volume BKEB: 
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The integrals can be evaluated to give 

y( 1 - cos 4) = &Apgdz, (A 4) 

where d is the depth that the point B is below the horizontal level of the bulk interface. 
This equation can be used to find d,  and hence the curvature E-l of the elastica a t  the 
point B. 

Unfortunately there is no equivalent formula for the three-dimensional axially 
symmetric problem. The evaluation of E needed in 9 2 for comparison with Hartland’s 
experiments can be carried out only by numerical computation. This seemed to involve 
undue effort and we used (A 4) instead since, considering the other approximations 
made, one would expect this to provide an acceptable approximation for the value of E .  

Appendix B 
We obtain the solution of the equation 

d3J/dg3 = 1/J3 

with the boundary condition dJ/dc  -+ - m as g-+ - co. If the scaled variables J = m-3p 
and 5 = m-42 are introduced then the equation transforms to 

with I d3p/dz3 = l / p 3 ,  

d p / d z - + - l  as z - f - c o .  

For large negative values of z we can then obtain the asymptotic expansion 

p - -2- *log ( - 2) - *z-llog ( - z )  --&-I. 

Equations (B 1 )  were then solved numerically by integrating forwards from z = - 1 0 to 
z = + 10, the asymptotic expansion being used to provide the initial conditions. The 
curvep(z) is sketched in figure 5 .  It has a minimum value of 1.2537 and d2p/dz2+ 1.2205 
as z -+ co. Another integration was performed which checked the accuracy of the initial 
conditions by integrating forwards from z = - 15. The minimum value found was 
1.2571 and d2p/dz2-+ 1.2147. Thus we conclude that 

Jmln g 1.25/m3 

and J - a m 6 g 2  as t - t c o ,  
where 01 N 0.61. 

Appendix C. The exterior matching condition 
We wish to find the rate of divergence of two touching curves (see figure 6) .  We 

choose a convenient co-ordinate system where the angle 8 is measnred from the 
normal line a t  the point of contact. The centre from which 0 is measured is a t  a distance 
R from the point of contact, where, in applications, R is the radius of the spherical 
cap formed by the two interfaces where they almost touch. We take these two inter- 
faces then to diverge with local radii of curvature r and p for the drop interface and 
bulk interface respectively. 
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FIGURE 5. Graph of the function p ( z ) .  

FIGURE 6. The gap H ( 0 )  between two tangential circles measured 
from the centre of a third tangential circle. 

It is a matter of elementary geometry to show that 

H = cos€J{R+p- [(R+p)2- (R2+2Rp)sec28]4+r-R- [ ( R - r ) z -  (R2-2Rr)sec2B]t}, 

which can be approximated by 

H iR2S2(p-1+r-1) as 8+0. 

?Te have applied t,his formula to two cases. 
( i )  When r = R and p = E ( 5  2) 
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where E is the radius of curvature of the elastica of the bulk interface a t  the point of 
contact. This can be found only by actually solving the exterior problem, or looking 
up the solution in tables. This can always be done, since the exterior problem is well 
posed, but considerable effort might be needed in that there seems to be no short cut. 
There is a short cut, however, for two-dimensional problems since the curvature can 
be related to the depth of the point of contact below the mean level of the bulk inter- 
face, and for the two-dimensional problem an explicit expression can be found for 
this depth (see appendix A). We used this two-dimensional result in $ 2  to obtain a 
value for E in Hartland's experiment. There is no reason why this need be correct, 
of course, but it avoided the large amount of work needed to find the exact value of E. 

(ii) When r = E, and p = E, (§  3) 

H = &R'(Ecl+ E-l u )02, 

where E (taken to be positive) is t'he radius of curvature of the plane-section curve of 
the elastica evaluated a t  the point of contact. The subscripts u and 1 refer to the 
upper drop interface and the lower bulk interface respectively. 

The comments on E above apply to both E, and E,, although they are dependent 
on one another and it is necessary to calculate only one of them numerically. This 
can be shown as follows. We refer to the notation of figure 1 .  We remain near to the 
point B and so can neglect any hydrostatic variations in the pressure. Then 

PI -b 7.; = P2, p2 -I- 7.: = P3, 

where K *  denotes total curvature and we shall use K to denote planar curvature. 
Since also 

P3 = PI + 4 y / R  
we can deduce that 4 / R  = K: + K:, 

or 2 / R  = K,+ K,, 

because, since the gradients of the curves and the spherical cap are all equal a t  that 
point, the curvature due to axial symmetry is R-1 for each curve. Finally we have 
K,, = E;1 and K, I - E i l ,  SO 

H = R0'( 1 + R/E, ) .  

Appendix D 
We consider the solution of the differential equation 

a 3 ~ / a p  = 6 - 3  - 1,  

i.e. (2.23), with the boundary condition G - t  1 as [-+-00 and the requirement that G 
merges into the exterior solution as [-+ 00. We use the word 'merges' since matching 
of the solutions in the conventional sense is not possible. To explain this we must 
consider the nature of the solutions. As [+ - 00 we can obtain the asymptotic solution 

G N 1 + A  exp(+k[)cos(~k31[)+A2exp(k[){$-+cos(k3~[)}, 

where k = 3+. Thus the solution begins a t  [ = -00 as a constant, unity, plus a small 
oscillation which grows in amplitude as [increases. (See figure 4.) Once this oscillation 
becomes of order unity its linear character vanishes. As G becomes small a large value 
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for G“ results because of the term G-3 on the right-hand side of (2.23). This has the 
effect of turning the oscillation round very sharply and shooting it outwards, SO that 
G achieves large values. Once G has become large the term G-3 becomes negligible 
and the - 1 on the right-hand side of (2.23) very slowly bends the oscillation back, 
so that the solution once more heads towards G = 0. An even sharper reflexion then 
results and the process is repeated. 

Now, using the scalings (2.22) and the results of appendix C, we can deduce that 
for G to match the exterior solution 

as 6 becomes large. Thus G would have to  increase by an order of magnitude equal 
to the dimensionless group of constants D. Formally this is impossible since, formally, 
this is properly considered as a limiting operation, so that D can be arbitrarily large, 
and to increase G by an arbitrary amount would involve an infinite number of ever 
growing loops and reflexions. But in practice G increases by an extremely large factor 
after each reflexion. A numerical factor of 104 is quite easy to obtain with only a single 
reflexion, and such a factor can easily equal the numerical value taken by D in any 
real situation, since then D will merely be large and not infinite. 

With this in mind we computed a set of solution curves of (2.23) as far as the first 
major reflexion. A typical curve is sketched in figure 4. On the rebound from this 
reflexion the curves always had the form 

where the second term $DC2, although formally small, was much bigger than the other 
term because of the large value of D.  We took this part of the solution to merge into 
the exterior solution. No re-looping of the solution for G occurs in practice, of course, 
because before the term - & 6 3  can operate to turn the solution back towards smaller 
values of G, the approximations which led to this equation become invalid and the 
full equations have to be used. 

I n  the numerical computation of these curves, initial conditions were obtained 
using the asymptotic expansion quoted a t  the beginning of this appendix with values 
of A chosen between 0.5 and 10. Special care had to be taken in the numerical com- 
putation in the region where G became small. The constant was found in different 
cases from 

D = G ( g ) + y  as G-tlarge values, 

where the origin for 6 was taken as the point where G was minimum. As we have 
mentioned elsewhere, there is an arbitrary choice for this origin which can be resolved 
only by considering higher approximations. Theoretically this is not a problem since 
D is nominally an order of magnitude larger than 6 and such a change should alter 
D by only a relatively small amount. As a practical point, however, the value of D 
given by (D 1)  is principally determined as the cube root of a large quantity, and the 
effect of this is to produce values of which are much smaller than one would ideally 
wish. I n  Hartland’s experiment, for instance, D = 6, and clearly the exact position 
of the 6 origin is of importance in such cases if one wishes to make exact calculations. 
I n  taking our 6 origin to be a t  the position of minimum G we have ignored this problem. 
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FIGURE 7.  The minimum value of G plotted as a function of the matching 
coefficient D for the corresponding curve (appendix D) . 

In  figure 7 we have plotted the values obtained for D against the corresponding 
minimum value of G. The curve cannot be continued for larger values of Gmin since 
G does not subsequently increase sufficiently for G-3 to be negligible, so D does not 
approach a satisfactory consta.nt value in such cases. The curve can be continued for 
smaller values of Gmtn, but values of D greater than 25 seem unlikely in physical 
situations. 

An interesting paper with which to compare these results is that of Bretherton 
(1961)) who considers the passage of an air bubble along a capillary tube which is 
otherwise full of a viscous fluid with a high surface tension. A thin film of liquid remains 
on the wall as the bubble passes and the equations for this thin film are similar to ours. 
He, too, solves his problem by matching to the exterior solutions, which in his case 
are the caps on the top and bottom of the moving bubble. In  the case when the bubble 
rises against gravity his equation is identical with (2.23) except for a difference in 
sign due to the fact that g is measured in the opposite direction. The same difficulty 
over matching that we have discussed also occurs in Bretherton’s problem but seems 
to have been overlooked, possibly because it occurs in the region which (in his problem) 
is not of interest. 

Appendix E 
We wish to find the two-dimensional viscous flow generated in a half-space by the 

boundary conditions u = uo(x) and v = 0 along its plane boundary y = 0. In  terms 
of the stream function $ defined by u = a$/ay and v = - a$/ax, the equation for 
viscous motion is the biharmonic equation 

and the boundary conditions are 
V4$ = 0 

$ = 0, a$/@ = u0(x) on y = 0 

and that $ is bounded as x2 + y2 -+ 00. We look for a solution of the form $ = y$(x, y), 
where $ satisfies 

Since $ is harmonic we can use complex-variable theory and set 

VZ$ = 0, $(x,O) = uo(z). 

$ = Rew(z), 
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where z = x + iy and w is an analytic function which is regular in the upper half-plane 
and satisfies 

and w+O as IzI+co, 

where the asterisk denotes the complex conjugate. If we consider the analytic function 

w(x + i0) + w*(x - i0) = 2u0(x) 

W(2)  = - 
2mi f m  -, t-z UOdt 

then we see that it has the property 

W(x+iO)+  W*(x- i0)  = -. - + fruo(4 
2712 f -m uo(t)dt t - x  

1 uo( t )d t  --f - + fruo(x) = uo(x). 
2nz -m t - x  

It follows that the regular function w that we want is 

w = 2w 

and the solution of the original boundary-value problem is 

assuming, of course, that the integral on the right-hand side of this equation actually 
exists. 
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